The University of Alicante at MultiLing 2015: approach, results and further insights

Marta Vicente, Óscar Alcón, <u>Elena Lloret</u> MultiLing 2015

Overview

- Motivation & Context
- Multilingual Single-document Summarization
 - UA-DLSI approach
- Experiments & Evaluation
 - Language choice & Datasets
 - Experimental Setup
 - Results & Analysis
- Conclusions & Next Steps

Motivation & Context

High volumes of information

- Difficult to manage
- What is the relevant information for us?

Motivation & Context

... in multiple languages

Information lost if we cannot understand all the languages

Motivation & Context

Multilingual Summarization as a key technology

Determines the most relevant information

Deal with multiple languages

Multilingual Single-document Summarization (MSS)

To evaluate performance of systems generating a single document summary from Wikipedia articles in some of the languages provided (at least 3 languages from 38 available languages)

- Technique employed
 - PCA: Principal Component Analysis
 - A statistical technique focused on the synthesis of information to compress and interpret the data.
 - Provides a way to determine the most relevant key terms of a document

- Technique employed
 - PCA: Principal Component Analysis
 - A statistical technique focused on the synthesis of information to compress and interpret the data.
 - Provides a way to determine the most relevant key terms of a document
- Our contribution
 - Incorporation of lexical-semantic knowledge
 - Named Entity Recognition
 - WordNet + EuroWordNet

Summary Generation Process

Interpretation

 Creating the lexicalsemantic matrix

Transformation

 PCA in action: determining key concepts

Summary Generation Sentence selection and ordering

Interpretation

 Creating the lexicalsemantic matrix

- Basic linguistic processing: sentence segmentation, tokenization, stopwords removal
- Identification of Named Entities and synonyms
- We group a set of synonyms under the same concept by the most frequent sense approach for each term.

Interpretation

 Creating the lexicalsemantic matrix

- Basic linguistic processing: sentence segmentation, tokenization, stopwords removal
- Identification of Named Entities and synonyms
- We group a set of synonyms under the same concept by the most frequent sense approach for each term.

Result: an initial lexical-semantic matrix, sentence as rows in the matrix, sense units (concepts, named entities, terms) as columns.

Transformation

 PCA in action: determining key concepts

- Applying PCA technique we obtain the principal components (eigenvectors) and its corresponding weight (eigenvalue).
- The first eigenvectors collect the major part of the information extracted from the covariance matrix
 - Eigenvectors are derived in decreasing order of importance

Transformation

 PCA in action: determining key concepts

- Applying PCA technique we obtain the principal components (eigenvectors) and its corresponding weight (eigenvalue).
- The first eigenvectors collect the major part of the information extracted from the covariance matrix
 - Eigenvectors are derived in decreasing order of importance

Result: relevant concepts are determined

Summary Generation

- Sentence selection and ordering
- Two strategies are proposed for building different types of summaries
 - ▶ Generic summaries → for each relevant concept, select one sentence in which it appears
 - ► Topic-focused summaries → for each relevant concept, select <u>all the sentences</u> in which it appears

Summary Generation

- Sentence selection and ordering
- Two strategies are proposed for building different types of summaries
 - ▶ Generic summaries → for each relevant concept, select one sentence in which it appears
 - ► Topic-focused summaries → for each relevant concept, select <u>all the sentences</u> in which it appears

Result: the summary is obtained

Language choice

English

Adding lexical-semantic knowledge requires some resources available for these languages

German

Named Entity Recognition → Standford NER

Spanish

Semantic knowledge → WordNet + EuroWordnet

Datasets provided

Training

- 30 articles/language
- Human-generated summaries
- Character length/target summary

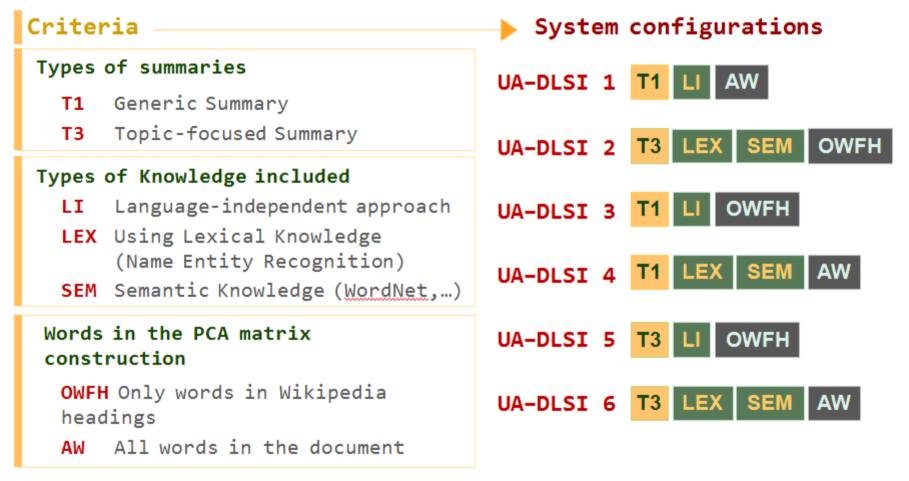
Test

- 30 articles/language
- NO human-generated summaries
- Character length/target summary

Datasets provided

Training

- 30 articles/language
- Human-generated summaries
- Character length/target summary


Test

- 30 articles/language
- NO human-generated summaries
- Character length/target summary

Concision & precision are required

Lang	Compr. ratio
DE	2.75%
EN	7.19%
ES	5.21%

Experimental Setup

- Experimental Setup
 - Baselines
 - LEAD
 - System that selects the leading substring of the article's body having the same length as the human summary
 - ORACLES
 - Select sentences from the body text that cover the tokens in the human sentences using as few sentences as possible
 - MSS 2015 Participants (5 systems)
 - *BGU-SCE" "CCS" "EXB" "LCS-IESI" "UA-DLSI"

Results & Analysis

ROUGE 1, F-measure

		UA - DLSI 1	UA - DLSI 2	UA - DLSI 3	UA - DLSI 4	UA - DLSI 5	UA - DLSI 6	Lead	Oracles	Best performance
	en	0.45605	0.42703	0.40551	0.45627 (15/22)	0.42419	0.42727	0.42907	0.60983	BGU-SCE 5 0.49361
	es	0.48977 (8/13)	0.47141	0.46979	0.48454	0.47691	0.47193	0.46599	0.61691	CCS 4 0.52126
	de	0.34110	0.33725	0.36236 (7/13)	0.34317	0.33437	0.34553	0.32230	0.52759	CCS 4 0.38803
	UA-DLSI 1 T1 LI AW					UA-DL	SI 4 T1	LEX SEM	AW	
	UA-DLSI 2 T3 LEX SEM				M OWFH	UA-DL	SI 5 T3	LI OWFH		
UA-DLSI 3 T1 LI OWFH				Н	UA-DL	SI 6 T3	LEX SEM	AW		

Results & Analysis

	UA - DLSI 1	UA - DLSI 2	UA - DLSI 3	UA - DLSI 4	UA - DLSI 5	UA - DLSI 6	Lead	Oracles	Best performance
en	0.45605	0.42703	0.40551	0.45627 (15/22)	0.42419	0.42727	0.42907	0.60983	BGU-SCE 5 0.49361
es	0.48977 (8/13)	0.47141	0.46979	0.48454	0.47691	0.47193	0.46599	0.61691	CCS 4 0.52126
de	0.34110	0.33725	0.36236 (7/13)	0.34317	0.33437	0.34553	0.32230	0.52759	CCS 4 0.38803

- When summarizing Wikipedia articles, generic summarization has been shown to be more appropriate.
- Compress ratio values for German are the highest (2.75% against 7.19% for English), which is reflected in the scores obtained for this language.
 - These high values are quite challenging for a summarization task. In this sense, we keep looking into new options to improve our implementation

Conclusions & Next Steps

Potentials

- 1st time we participate in a summarization competition
- Promising results were obtained
- PCA is a very good technique for languageindependent summarization
- Wikipedia title headings were meaningful enough to build the PCA matrix in our summarization process

Limitations

- Lexical and semantic knowledge is dependent on the performance of the existing tools and resources
- Need for going beyond extractive summarization
- Compression ratio of Wikipedia articles too high compared with other type of documents

Conclusions & Next Steps

Potentials

- 1st time we participate in a summarization competition
- Promising results were obtained
- PCA is a very good technique for languageindependent summarization
- Wikipedia title headings were meaningful enough to build the PCA matrix in our summarization process

Limitations

- Lexical and semantic knwoledge is dependent on the performance of the existing tools and resources
- Need for going beyond extractive summarization
- Compression ratio of Wikipedia articles too high compared with other type of documents

Future Work → analyze PCA with other types of knowledge in order to advance the generation of abstractive summarization

Thank you for your attention!

Elena Lloret Pastor

Tel. +34 96 590 2448 Campus de Sant Vicent del Raspeig 03690 - Alacant elloret@dlsi.ua.es