

ExB Text Summarizer

Stefan Thomas, Christian Beutenmüller, Xose de la Puente, Robert Remus & Stefan Bordag ExB Research & Development GmbH

Outline

- Introduction
- ExB Summarizer
 - Preprocessing
 - (Fair)TextRank
- Official results
 - Single document summarization
 - Multi document summarization

Approaches to summarization

- Sentence extractive methods
 - State of the art
 - Limited results
- Abstractive summarization
 - The "human way" of summarization
 - Additional difficulty: Producing text

(B)

Overview of ExB summarizer

- Goals:
 - Scalability
 - Language independence
- Key ideas:
 - Main parts unsupervised
 - TextRank on a similarity graph of sentences

Preprocessing steps

- Rule-based Tokenization
- Stop-word removal
- Stemming
- Sentence boundary detection
- Temporal expression detection for multi document summarization

TextRank

- Invented by Rada Mihalcea
- Origin: PageRank algorithm [Page & Brin]
- Graph-based ranking algorithm
 - Text is represented as nodes and edges
 - Nodes are ranked according to their importance

FairTextRank

- Sentence similarity graph
 - Sentences = nodes
 - Similarity between sentences = weighted edges (between 0 and 1)
 - Bag-of-words model with Jaccard index
- Iterative application of TextRank
 - Helps covering different topics in the produced summary
- Postprocessing

Results (MSS)

System	#langs	Rank R-1	Rank R-2	Rank R-3	Rank R-4	Rank R-4SU
BGU-SCE-M	3	2.0	3.3	3.7	4.3	3.0
BGU-SCE-P	3	5.0	4.7	5.0	4.3	4.3
CCS	38	2.1	2.1	2.2	2.3	2.5
ExB	38	3.2	3.3	3.7	3.8	2.8
LCS-IESI	38	4.1	4.1	4.0	4.0	4.1
NTNU	2	5.5	6.0	6.0	7.0	5.0
UA-DLSI	3	6.0	5.0	4.7	5.0	6.0
Lead	38	5.1	5.0	4.6	4.3	5.0
Oracles	38	1.1	1.2	1.2	1.2	1.2

Results (MMS)

Language	AutoSummENG	MeMoG	NPowER	Rank/Total
Arabic	0.135	0.164	1.717	7/9
Chinese	0.118	0.141	1.654	1/5
Czech	0.188	0.200	1.874	4/7
English	0.167	0.191	1.817	6/10
French	0.200	0.195	1.892	5/8
Greek	0.147	0.170	1.750	5/8
Hebrew	0.115	0.147	1.655	8/9
Hindi	0.123	0.139	1.662	3/7
Romanian	0.168	0.183	1.809	4/6
Spanish	0.193	0.202	1.886	3/6

Summary

- TextRank based approach
- Multitude of preprocessing steps
- Participated in all possible languages
- Competitive results

Negative findings

- No increase in performance via:
 - Semantic Text Similarity instead of bag-of-words/Jaccard index
 - Word2vec word embeddings
 - Named entities
- ROUGE measure is inappropriate

Example of FairTextRank

Example of FairTextRank

Example of FairTextRank

