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Abstract
In this paper we examine the performance
of four term weighting approaches for
multilingual single and multi-document
summarization and the effects various to-
kenization and sentence splitting meth-
ods have on their performance. We in-
troduce a new single document summa-
rization method that only uses the docu-
ment’s hierarchical structure to compute
a summary. Finally we present the per-
formance results of each method on the
SIGDIAL 2015 Multilingual Single and
Multi-Document Summarization Tasks.

1 Single and Multi-Document
Summarization

Developing techniques to perform multilingual
summarization across many languages presents
many challenges. In this paper we consider al-
ternatives to two major challenges in multilingual
summarization. The first is accurate tokeniza-
tion and sentence boundary detection of a doc-
ument. The SIGDIAL 2015 Multilingual Single
and Multi-Document Summarization Tasks, de-
noted by MSS and MMS respectively, enabled
us to compare our multilingual sentence split-
ter FASST (Fast, Accurate, Sentence Splitter for
Text) against the performance of Basis Technol-
ogy’s natural language processing package called
Rosette (Basis Technology, 2015) and the Natural
Language Toolkit (Bird et al., 2009).

The second major challenge we study is term
weighting. Term weights are used as input into
our method for language independent extractive
summarization algorithm called OCCAMS (Opti-
mal Combinatorial Covering Algorithm for Multi-
document Summarization). In Davis et al. (2012)

we show that given oracle weights OCCAMS pro-
duces summaries which significantly outscore hu-
man summarizers in both coverage scores and
ROUGE scores. In this paper we aim to close
the gap between the performance of the oracle
weighting and our term-weighting and to better
approximate an oracle weighting (Conroy et al.,
2006). We will explore the performance of: term-
frequency weighting (TF), personalized term rank,
and nonnegative matrix factorization (Conroy et
al., 2013) techniques for term weighting.

By evaluating the capabilities of the different
linquistic techniques for sentence splitting and to-
kenization, and the different approaches for term-
weighing, we hope to close the performance gap
between our summarization systems and the OC-
CAMS summarizer given oracle weights.

Our method for computing a summary of a doc-
ument consists of the following steps: 1) Sen-
tence splitting 2) tokenization and language spe-
cific lemmatization or stemming 3) forming a
term-sentence matrix 4) term weight generation
5) sentence selection 6) sentence ordering. The
first two steps, sentence splitting and tokenization,
are language dependent, but the remaining steps
are language independent. Next we briefly discuss
each of these steps but will focus on sentence split-
ting and tokenization as they are a focus of our
major experiments for MultiLing 2015.

2 Sentence Boundary Detection and
Tokenization

We desired to test the hypothesis as to whether
or not more sophisticated sentence splitters and
tokenizers can improve the ability of a text sum-
marizer to generate a higher quality summary. In
particular, how well does our rule based sentence
splitter FASST-E (Conroy et al., 2009) and its mul-



tilingual extensions (Conroy et al., 2011) used in
conjunction with regular expression for tokeniza-
tion compare with more sophisticated systems.
We consider Basis Technology’s natural language
processing package called Rosette and the Natural
Language Toolkit, denoted NLTK, that are known
to use the Unicode standard breaking algorithm
(The Unicode Consortium, 2014), linguistic anal-
ysis, statistical modeling, and machine learning
to perform sentence splitting and lemmatization
as part of the tokenization. Proper tokenization
can improve the quality of the summary. FASST-
E simply employs the Porter stemmer whereas
Rosette performs lemmatization and uses morpho-
logical analysis to disambiguate compound words
in languages such as Arabic or German.

2.1 Rosette and NTK

Rosette was used to sentence split, tokenize,
and, when available, lemmatize Arabic, Chinese,
Czech, Dutch, English, French, German, Greek,
Hungarian, Italian, Japanese, Korean, Norwegian
(used Norwegian-nynorsk), Norwegian-bokmal,
Norwegian-nynorsk, Polish, Romanian, Russian,
Spanish, Swedish, Thai, and Turkish.

Rosette did not have a language processor for
Africaans and Bulgarian, so for those two cases
we used the closest matching language processor,
Dutch for Africaans and Russian for Bulgarian.

The NLTK was used to sentence split and
tokenize Basque, Catalan, Croatian, Esperanto,
Finnish, Georgian, Indonesia, Malay, Persian, Por-
tuguese, Serbian, Serbo-croatian, Slovak, Slovene,
and Vietnamese.

2.2 FASST

FASST uses a series of linguistic cues to split sen-
tences which are then formulated as regular ex-
pressions. In addition for English we perfrormed
additional processing to trim the sentence pro-
duced by FASST. The sentence trimmer is im-
plemented as a series of regular expressions and
a detailed description of it can be found in Con-
roy et al. (2009). The regular expressions used
for tokenization of sentence (declared by FASST),
largely break the sentence into either white space
delimited tokens, devoid of punctuation that are
then stemmed in the case of English text.

3 Term-Sentence Matrices

Term weights for indicating the relative impor-
tance of a term are computed based on a term-
sentence matrix, which is an instance of the vec-
tor space model. This model was introduced by
Salton (1991) and shortly after Dumais (1994)
proposed dimensionality reduction in document
retrieval systems, which has been used by many
other researchers for document summarization.
We construct the term-sentence matrix A = (ai,j),
where i = 1, . . . ,m for the terms, and j =
1, . . . , n for the valid sentences discovered in the
document for MSS or a collection of documents
for MMS. The column labels are the sentences
S1, . . . , Sn of the document(s), while the row la-
bels of the term-sentence matrix are the terms
T = (t1, . . . , tm) The matrix A is defined by

ai,j = `i,j

where, `i,j is 1 when term i appears in sentence j
and 0 otherwise.

The set of terms, T = (t1, . . . , tm) are selected
by using Dunning’s likelihood statistic (Dunning,
1993), which is equivalent to a mutual information
statistic. The background used in the MSS task
was the collection of Wikipedia feature articles in
the given language. For the MMS task, the back-
ground used was simply the other 9 documents in
the MMS data set for the language. The rejection
threshold (p-value) was chosen to insure that the
number of terms in the matrix A was at least twice
the target length of the summary.

4 Term Weights

Given the term-sentence matrix as defined in the
previous section we estimate the relative impor-
tance of a term, which is designed to approximate
the probability that a human would include a term
in a summary (Conroy et al., 2006). For MultiL-
ing15 we considered four approaches for approxi-
mating the oracle score: term-frequency (TF), per-
sonalized term-rank, and two based on nonnega-
tive matrix factorization methods.

4.1 Term Frequency

Term frequency and its variants is a commonly
used term-weight for summarization, information
retrieval, and keyword identification tasks. The
term frequency fi of term i, is defined as the num-
ber of times i appears in all sentences.



4.2 Personalize Term Rank

The personalized term rank (PTR) we used in
Conroy et al. (2013), is a variant of TextRank Mi-
halcea (2005), that uses the high mutual informa-
tion terms in the computation of the term rank.
The personalization vector is simply the normal-
ized term frequency. Thus the resulting stationary
vector will reflect not only the frequency of the
terms in the document but also the co-occurrence
of the terms in the sentences.

4.3 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NNMF) of a
term sentence matrix can be used for dimension-
ality reduction and as such is another alternative
to improve over term frequency (Conroy et al.,
2013). NNMF, much like the method of latent
semantics analysis, requires a selection of the di-
mension k for the rank approximation of the term-
by-sentence matrix. We used the method of al-
ternating least squares to compute an approximate
factorization A ≈ WH, where W has k columns
and H has k row. In this paper we used Matlab’s
function nnmf(), with 20 random starts to improve
the approximation. The dimension k was chosen
for the MSS and MMS based on experiments with
the training data. The term-weights given to OC-
CAMS are simply the row sums of WH.

4.4 Interval Bounded Nonnegative Matrix
Factorization (IBNMF)

The fourth term-weighting method we explore
uses the interval bounded nonnegative matrix fac-
torization (IBNMF), first introduced in Conroy et
al. (2013). Here in this paper we use the output
of NNMF from 20 random starts as initial input to
IBMNF. We use the sums of the rows of the re-
sulting factorization, as was the case for NNMF,
to estimate the term weights.

5 Sentence Selection with OCCAMS

The OCCAMS algorithm for extractive summa-
rization chooses a set of sentences whose com-
bined weight of terms is maximized while the
combined sum of lengths of the sentence selected
must not exceed the bound on the size of the sum-
mary L. OCCAMS takes as input a set of sen-
tences, where each sentence is a set of terms. Each
term has a weight and each sentence has a length.
OCCAMS outputs a set of sentences that maxi-
mize the combined term weights and minimizes

redunancy, which is especially important for the
multi-document summarization task. Here in this
paper we use Conroy et al. (2013) version of OC-
CAMS. Davis et al. (2012) contains detailed de-
scription and combinatorial analysis of the perfor-
mance of the algorithm.

Sentence ordering is done by employing an ap-
proximate traveling salesperson algorithm (Con-
roy et al., 2009).

6 Hierarchical Sentence Interweaving

To assess how much the structure of a large doc-
ument alone can contribute to generating a sum-
mary, we developed an algorithm that computes a
summary of a document using only the tree struc-
ture of the document’s sections, paragraphs, and
sentences. The algorithm computes a summary
by hierarchically interweaving the sentences of the
paragraphs and sections of the document and does
not perform any statistical analysis of the docu-
ment, or the dataset. We were able to evaluate
the algorithm only on the MSS dataset because
the XML version of the test documents preserved
the hierarchical structure of the sections and para-
graphs. Depending on the language the sentences
of the paragraphs were identified using Rosette or
the NLTK. Figure 1 illustrates how the sentences
of a document are hierarchically interweaved. The
sentences of paragraphs in a section are first inter-
weaved by their positions. At higher section levels
the subsequent list of sentences are interweaved
and the summary is obtained from the top list of
sentences truncated to the desired size. The al-
gorithm selects the sentences that a human reader
would read when skimming a large, well written,
document.

6.1 Multi-Document Summarization

For the MMS task the main goal was to com-
pare the FASST sentence splitting (plus the Porter
stemmer and FASST trimmer for English) to the
combination of Rosette and the Python NLTK,
where lemmatization was available in a number of
languages in addition to the sentence splitting. Ta-
ble 1 gives the system mapping of the three entries.

The ROUGE-2 and ROUGE-4 evaluations for
MMS are illustrated in Figures 2 and 3. The scores
show the systems are competitive and indeed that
Basis and NLTK-TF out-perform FASST-TF in
all but Chinese and Arabic. Although individu-
ally these results are not significant, in conjunction



d : 1, 8, 3, 10, 2, 9, 6, 4, 7, 5

s : 1, 3, 2, 6, 4, 7, 5

p : 1, 2 s : 3, 6, 4, 7, 5

p : 3, 4, 5 p : 6, 7

s : 8, 10, 9

p : 8, 9 p : 10

Figure 1: In the document tree the leaves are the
paragraphs, labeled with p, with their list of sen-
tences represented as numbers. At each section
level, labeled with s, the list of sentences in the
subsections or paragraphs are interweaved. The
summary for the document is obtained by truncat-
ing the final weaving of the sentences in the docu-
ment, labeled with d, to the appropriate size.

Label Method
MMS8a FASST TF
MMS8b Basis/NLTK TF
MMS8c FASST IBNMF 24

Table 1: Labels of systems submitted for the MMS
task.

they give strong evidence that Basis and NLTK are
improving the summaries generated.

6.2 Results for the MSS at MultiLing 2015
In the multilingual single document task (MSS)
the four term weighting approaches were used as
well as the hierarchical sentence interweaving. Ta-
ble 2 contains the five summary methods we sub-
mitted to the MSS task.

A total of 22 systems participated in the MSS
task. The CCS entries and two other systems
were only ones to submit summaries for all 38
languages. The maximum number of languages
submitted by other systems was three. A lead

Label Method
CCS1 IBNMF Rank 25
CCS2 NMF Rank 25
CCS3 PTR
CCS4 TF
CCS5 Interweaving

Table 2: Labels of systems submitted for the MSS
task.

System ROUGE-2 ROUGE-4 MeMoG
CCS1 20/38 3/38 19/38
CCS2 21/38 4/38 19/38
CCS3 21/38 3/38 19/38
CCS4 20/38 2/38 20/38
CCS5 23/38 7/38 20/38
EXB1 15/38 1/38 11/38

LCS-IESI1 6/38 2/38 6/38
ANOVA 25/38 10/38 21/38

Table 3: The first seven rows in the table provide
the fraction of times that the corresponding system
significantly outperformed the lead baseline. The
last row gives the fraction of languages (out of 38)
where a significant difference was observed by the
ANOVA.

summary was used as the task baseline. All sys-
tems were scored using ROUGE-1, 2, 3, and 4
(Lin, 2004) as well as MeMoG (Giannakopoulos
et al., 2008; Giannakopoulos et al., 2010). A non-
parametric analysis of variance test was used to
measure any significance difference between the
systems. The last row of Table 3 gives the fraction
of languages (out of 38) where a significant differ-
ence was observed by the ANOVA for ROUGE-2,
4 and MeMoG. Each other row gives the fraction
of times that a system significantly outperformed
(as measured by a paired Wilcoxon test) the lead
baseline. It is worthy to note that the hierarchical
sentence interweaving method, CCS5, is the sys-
tem that most often significantly outperforms the
baseline.

Figure 4 gives a scatter plot of ROUGE-3 scores
for the language where the ANOVA indicated a
significant difference among the system.

Finally, we turn to comparing the five CCS sys-
tems. Table 4 is a matrix giving the number of lan-
guages that CCS system i significantly out scored
system j in ROUGE-4. The table clearly shows
that there are few significant differences within the
first four systems, indicating that the term weight-
ing are all about as good as TF on the high mutual
information bigrams. Whereas the hierarchical
sentence interweaving significantly out performs
the term-weighting methods in about 1/4 of the
languages.



Figure 2: ROUGE-2 scores for MMS

Figure 3: ROUGE-4 scores for MMS



Figure 4: ROUGE-3 scores for MSS

CCS1 CCS2 CCS3 CCS4 CCS5
CCS1 0 0 1 0 0
CCS2 1 0 2 2 0
CCS3 1 1 0 2 0
CCS4 2 2 0 0 0
CCS5 8 9 10 8 0

Table 4: The table shows the number of times
that each system significantly outperformed an-
other as returned by a pair Wilcoxon test using the
ROUGE-4 scores.

7 Conclusions and Future Work

In this paper we compared the rule base FASST
sentence splitter and the Rosette and NLTK sen-
tence splitters and tokenizers. The differences on
the MMS task were small but largely consistently
in favor of the Rosette and NLTK. No significant
gain was seen in the use of NMF for the MMS
task.

On the MSS task the four term-weighting meth-
ods with OCCAMS sentence selection showed
great promise, significantly outperforming the
lead baseline more than other systems in the task.
The best performer appears to be the hierarchical

sentence interweaving method. This system did
not use OCCAMS and in future work the two sys-
tems will be combine.
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